Reductive cleavage of the O-O bond in multicopper oxidases: a QM/MM and QM study.

نویسندگان

  • Martin Srnec
  • Ulf Ryde
  • Lubomír Rulísek
چکیده

The key step in the reaction mechanism of multicopper oxidases (MCOs)--the cleavage of the O-O bond in O2--has been investigated using combined quantum mechanical and molecular mechanical (QM/MM) methods. This process represents a reaction pathway from the peroxy intermediate after it accepts one electron from the nearby type-1 Cu site to the experimentally-observed native intermediate, which is the only fully oxidised catalytically relevant state in MCOs. Scans of the QM(DFT)/MM potential energy surface have allowed us to obtain estimates of the activation energies. Furthermore, vacuum calculations on a smaller model of the active site have allowed us to estimate the entropy contributions to the barrier height and to obtain further insight into the reaction by comparing the small cluster model with the QM/MM model, which includes the entire protein. Owing to the complicated electronic structure of these low-spin exchange coupled systems, multireference quantum chemical calculations at the complete-active space second-order perturbation theory (CASPT2) were used in an attempt to benchmark the barrier heights obtained at the DFT(B3LYP) level. Our best estimate of the activation barrier is deltaG = 60-65 kJ mol(-1), in good agreement with the experimental barrier of approximately 55 kJ mol(-1), which can be inferred from the experimental rate constant of k > 350 s(-1). It has also been shown that the reaction involves protonation of the O2 moiety before bond cleavage. The proton likely comes from a nearby carboxylate residue which was recently suggested by the experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reorganisation Energy for Internal Electron Transfer in Multicopper Oxidases

We have calculated the reorganisation energy for the intramolecular electron transfer between the reduced type 1 copper site and the peroxy intermediate of the trinuclear cluster in the multicopper oxidase CueO. The calculations are performed at the combined quantum mechanics and molecular mechanics (QM/MM) level, based on molecular dynamics simulations with tailored potentials for the two copp...

متن کامل

Oxygen Binding, Activation, and Reduction to Water by Copper Proteins.

Copper active sites play a major role in biological and abiological dioxygen activation. Oxygen intermediates have been studied in detail for the proteins and enzymes involved in reversible O(2) binding (hemocyanin), activation (tyrosinase), and four-electron reduction to water (multicopper oxidases). These oxygen intermediates exhibit unique spectroscopic features indicative of new geometric a...

متن کامل

QM/MM Study on the Mechanism of Aminophenol Oxidation by Functionalized β-Cyclodextrin as Oxidase Nanomimic

In this study, functionalized β-cyclodextrin (β-CD) by aldehyde group was investigated as an oxidase enzyme mimic for the amino phenol oxidation. All calculations were performed by GAUSSIAN 09 package using two layers ONIOM method at the ONIOM (MPW1PW91/6-311++G(d,p)/UFF) level. In the first step, H2O2 is encapsulated in the hydrophobic cavity. In the second step, H2<...

متن کامل

Geometry optimization using tuned and balanced redistributed charge schemes for combined quantum mechanical and molecular mechanical calculationsw

We performed geometry optimizations using the tuned and balanced redistributed charge algorithms to treat the QM–MM boundary in combined quantum mechanical and molecular mechanical (QM/MM) methods. In the tuned and balanced redistributed charge (TBRC) scheme, the QM boundary atom is terminated by a tuned F link atom, and the charge of the MM boundary atom is properly adjusted to conserve the to...

متن کامل

Geometry optimization using tuned and balanced redistributed charge schemes for combined quantum mechanical and molecular mechanical calculations.

We performed geometry optimizations using the tuned and balanced redistributed charge algorithms to treat the QM-MM boundary in combined quantum mechanical and molecular mechanical (QM/MM) methods. In the tuned and balanced redistributed charge (TBRC) scheme, the QM boundary atom is terminated by a tuned F link atom, and the charge of the MM boundary atom is properly adjusted to conserve the to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 148  شماره 

صفحات  -

تاریخ انتشار 2011